Definition A group G is cyclic if I an
element a c G such that
$$\langle a \rangle = G$$
.
Such an a is called a generator of G.
The examples Z and Z₆ show that cyclic
groups can be both infinite and finite.
However all the examples which we saw were
abelian. This is aways the :-

Now that we have learnet about subgroups and just encountered a new concept of cyclic groups,

Our first instinsct should be to understand the subgroups of a cyclic group. This is recurring theme in mathematics; ouce you learn a new topic, try to relate it to previously learned topics. So let's go back to our set of examples of ydic groups :-1) $(\mathbb{Z}, +)$. We saw that the set of even integers 22 is a subgroup of Z. But then 2Z = <27 and so it ba cyclic group. Let's try $3\mathbb{Z} = \{2, \dots, -9, -6, -3, 0, 3, 6, 9, \dots\}$ which are multiples of 3. This again is a subgroup and is a cyclic group with 3 as a generator. Infact, nZ is a subgroup of Z, Y ne Z and nZ= <n>, so is a cyclic group.

2) Let's look at (Z₆,+) which is a cyclic group generated by <17. Check that $\{0, 2, 4\}$ is a subgroup of Z₆ and again $\{0, 2, 4\} = \langle 2 \rangle$, so it is a cyclic group.

a generator
$$a$$
, so $G_{I} = \langle a \rangle$. Let H be a subgroup
of G_{I} . We want to find an element $b \in H$
such that $H = \langle b \rangle$.

First of all ig H= LeE or H= G then the result is true, so suppose H & a proper subg--roup of G. Pick any element CEH, CZE. Then $c \in G$ as well and so $c = a^{k}$ for some $k \neq 0$, REZ. Since H is a subgroup, so c'= a-KEH. So we know that H contains a positive power of a. But we want to find an dement, that will generate all other elements, so intuitively it seems to choose a such that m's the smallest positive integer with a"eH (why can we do this?) Claim: - H = Lam> Proof of the claim: - Let x ∈ H be arbitrary.

We want to show that $x = (a^m)^n$ for some n e Z. Since y e Gas well so y= a' for some r ≠ 0. By division algorithm $\mathfrak{I} = \mathsf{n}\mathsf{m} + \beta$ with $0 \leq \beta < \mathsf{m}$. So, $y = a^n = a^{nm+\beta}$ = q^{nm} , $q^{\beta} = (q^m)^n$, q^{β} $\Rightarrow a^{n} = (a^{m})^{-n} \cdot y$ But a^meH=D (a^m)⁻¹eH and yeH=D (a^m)ⁿ y ∈ H => q^l ∈ H. But m was chosen to be the smallest power of a such that ameth, and (s<m =) p=0. So $y = (a^m)^n$. So any arbitrary $y \in H$ is a power of an and hence H=<am>.

Remark: - Note that the proof of the Theorem
is telling us a lot more! We not only know
that any
$$H \leq G$$
 is cyclic but we also know
a generator of H. How? We know the
generator of $G = \langle a \rangle$. Simply find the
smallest, or the first power of a which is
in H and that will be the generator.
e.g. in the case of $27 \leq Z$, a
generator of Z is 1. Then 2 is the smallest
power of I such that $1+1=2 \leq 2Z$ and so
 $\langle 2 \rangle = 2Z$.

۵_____×