Lecture 6
We start by defining cyclic groups.

Definitiaiu A group G is cyclic y \exists an dement $a \in G$ such that $\langle a\rangle=G$.
Such an a is called a generator of G. The examples \mathbb{Z} and \mathbb{Z}_{6} show that cyclic groups can be both infinite and finite. However all the examples which we saw mere abelian. This is always the :-

Propositiair Cyclic groups are abelian.
Proof. Left as an easy exercise.
ET

Now that we have learnt about subgroups and just encountered a new concept of cyclic groups,
an first instinsct should be to understand the subgroups of a cyclic group. This is recurring theme in mathematics; Once you learn a new topic, try to relate if to previously learned topics.

So Let's go back to om set of examples of uydic groups:-

1) $(\mathbb{Z},+)$. We saw that the set of even integers $2 \mathbb{Z}$ is a subgroup of \mathbb{Z}. But then $2 \mathbb{Z}=\langle 2\rangle$ and so it is a cyclic group.
Let's try $\quad 3 \mathbb{Z}=\{\cdots,-9,-6,-3,0,3,6,9, \ldots\}$ which are multiples of 3 . This agaric is a subgroup and is. a cyclic group with 3 as a generator. Infect, $n \mathbb{Z}$ is a subgroup of \mathbb{Z}, f $n \in \mathbb{T}$ and $n \mathbb{C}=\langle n\rangle$, so ba cyclic group.
2) Let's look at $\left(\mathbb{Z}_{6},+\right)$ which is a cydic group generated by $\langle 1\rangle$. Check that $\{0,2,4\}$ is a subgroup of \mathbb{Z}_{6} and again $\{0,2,4\{=\langle 2\rangle$, So it is a cyclic group.

Exercise:- Try to formulate a result (or Theorem) based on the observations of the above exam-- plies.

The observations above hints that a subgroup of a uyclic group is itself cyclic. The is precisely the next

Theorem:- Every subgroup of a cyclic group is cyclic.
Proof:- Suppose G is a cyclic group with a
a generator a, so $G=\langle a\rangle$. Let H be a subgroup of G. We want to find an element $b \in H$ such that $H=\langle b\rangle$.

First of all if $H=\{e\{$ or $H=G$ then the result is true, so suppose H is a proper subg--roup of G. Pick any element $c \in H, c \neq e$. Then $c \in G$ as well and so $c=a^{k}$ for some $k \neq 0$, $k \in \mathbb{Z}$. Since H is a subgroup, so $c^{-1}=a^{-k} \in H$. So we know that H contains a posituie power of a. But we want to find an dement, that will generate all other elements, so intuitively it seems to choose a^{m} such that m is the smallest positive integer with $a^{m} \in H \quad$ (why can we do this?)
Claim:- $H=\left\langle a^{m}\right\rangle$
Proof of the claim :- Let $x \in H$ be arbitrary.

We wont to show that $x=\left(a^{m}\right)^{n}$ for some $n \in \mathbb{Z}$. Since $y \in G$ as well so $y=a^{r}$ for some $r \neq 0$. By division algorithm

$$
r=n m+\beta \text { with } 0 \leq \beta<m \text {. }
$$

So,

$$
\begin{aligned}
y=a^{r} & =a^{n m+\beta} \\
& =a^{n m} \cdot a^{\beta}=\left(a^{m}\right)^{n} \cdot a^{\beta}
\end{aligned}
$$

$\Rightarrow \quad a^{\beta}=\left(a^{m}\right)^{-n} \cdot y$
But $a^{m} \in H \Rightarrow\left(a^{m}\right)^{-1} \in H$ and $y \in H=0$ $\left(a^{m}\right)^{-n} \cdot y \in H \Rightarrow a^{\beta} \in H$. But m was chosen to be the smallest power of a such that $a^{m} \in H$, and $\beta<m \Rightarrow \beta=0$.

So $y=\left(a^{m}\right)^{n}$. So any arbitrary $y \in H$ b a power of a^{m} and hence $H=\left\langle a^{m}\right\rangle$.

Remark:- Note that the proof of the Theorem is telling us a lot more! We not only know that any $H \leq G$ is cyclic but we also know a generator of H. How? We know the generator of $G=\langle a\rangle$. Simply find the smallest, or the first power of a which is in H and that will be the generator. e.g. in the case of $2 \mathbb{Z} \leq \mathbb{Z}$, a generator of \mathbb{Z} is 1 . Then 2 is the smallest power of 1 such that $1+1=2 \in 2 \mathbb{Z}$ and so $\langle 2\rangle=2 \mathbb{Z}$.

